Feynman_Lectures_on_Physics_Volume_1_Chapter_02.pdf

(187 KB) Pobierz
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
2
Basic Physics
2-1 Introduction
In this chapter, we shall examine the most fundamental ideas that we have
about physics—the nature of things as we see them at the present time. We shall
not discuss the history of how we know that all these ideas are true; you will
learn these details in due time.
The things with which we concern ourselves in science appear in myriad forms,
and with a multitude of attributes. For example, if we stand on the shore and look
at the sea, we see the water, the waves breaking, the foam, the sloshing motion
of the water, the sound, the air, the winds and the clouds, the sun and the blue
sky, and light; there is sand and there are rocks of various hardness and perma-
nence, color and texture. There are animals and seaweed, hunger and disease, and
the observer on the beach; there may be even happiness and thought. Any other
spot in nature has a similar variety of things and influences. It is always as com-
plicated as that, no matter where it is. Curiosity demands that we ask questions,
that we try to put things together and try to understand this multitude of aspects
as perhaps resulting from the action of a relatively small number of elemental
things and forces acting in an infinite variety of combinations.
For example: Is the sand other than the rocks? That is, is the sand perhaps
nothing but a great number of very tiny stones? Is the moon a great rock? If we
understood rocks, would we also understand the sand and the moon? Is the wind
a sloshing of the air analogous to the sloshing motion of the water in the sea?
What common features do different movements have? What is common to dif-
ferent kinds of sound? How many different colors are there? And so on. In this
way we try gradually to analyze all things, to put together things which at first
sight look different, with the hope that we may be able to reduce the number of
different things and thereby understand them better.
A few hundred years ago, a method was devised to find partial answers to
such questions. Observation, reason, and experiment make up what we call the
scientific method. We shall have to limit ourselves to a bare description of our
basic view of what is sometimes called fundamental physics, or fundamental ideas
which have arisen from the application of the scientific method.
What do we mean by "understanding" something? We can imagine that this
complicated array of moving things which constitutes "the world" is something
like a great chess game being played by the gods, and we are observers of the game.
We do not know what the rules of the game are; all we are allowed to do is to
watch the playing. Of course, if we watch long enough, we may eventually catch
on to a few of the rules. The rules of the game are what we mean by fundamental
physics. Even if we knew every rule, however, we might not be able to under-
stand why a particular move is made in the game, merely because it is too com-
plicated and our minds are limited. If you play chess you must know that it is
easy to learn all the rules, and yet it is often very hard to select the best move or
to understand why a player moves as he does. So it is in nature, only much more
so; but we may be able at least to find all the rules. Actually, we do not have all
the rules now. (Every once in a while something like castling is going on that we
still do not understand.) Aside from not knowing all of the rules, what we really
can explain in terms of those rules is very limited, because almost all situations are
so enormously complicated that we cannot follow the plays of the game using the
rules, much less tell what is going to happen next. We must, therefore, limit our-
selves to the more basic question of the rules of the game. If we know the rules,
we consider that we "understand" the world.
2-1 Introduction
2-2 Physics before 1920
2-3 Quantum physics
2-4 Nuclei and particles
2-1
How can we tell whether the rules which we "guess" at are really right if we
cannot analyze the game very well? There are, roughly speaking, three ways. First,
there may be situations where nature has arranged, or we arrange nature, to be
simple and to have so few parts that we can predict exactly what will happen,
and thus we can check how our rules work. (In one corner of the board there may
be only a few chess pieces at work, and that we can figure out exactly.)
A second good way to check rules is in terms of less specific rules derived
from them. For example, the rule on the move of a bishop on a chessboard is
that it moves only on the diagonal. One can deduce, no matter how many moves
may be made, that a certain bishop will always be on a red square. So, without
being able to follow the details, we can always check our idea about the bishop's
motion by finding out whether it is always on a red square. Of course it will be,
for a long time, until all of a sudden we find that it is on a black square (what
happened of course, is that in the meantime it was captured, another pawn crossed
for queening, and it turned into a bishop on a black square). That is the way it is
in physics. For a long time we will have a rule that works excellently in an over-all
way, even when we cannot follow the details, and then some time we may discover
a new rule. From the point of view of basic physics, the most interesting phenomena
are of course in the new places, the places where the rules do not work—not the
places where they do work! That is the way in which we discover new rules.
The third way to tell whether our ideas are right is relatively crude but prob-
ably the most powerful of them all. That is, by rough approximation. While we
may not be able to tell why Alekhine moves this particular piece, perhaps we can
roughly understand that he is gathering his pieces around the king to protect it,
more or less, since that is the sensible thing to do in the circumstances. In the
same way, we can often understand nature, more or less, without being able to see
what every little piece is doing, in terms of our understanding of the game.
At first the phenomena of nature were roughly divided into classes, like heat,
electricity, mechanics, magnetism, properties of substances, chemical phenomena,
light or optics, x-rays, nuclear physics, gravitation, meson phenomena, etc. How-
ever, the aim is to see complete nature as different aspects of one set of phenomena.
That is the problem in basic theoretical physics, today—to find the laws behind
experiment; to amalgamate these classes. Historically, we have always been able
to amalgamate them, but as time goes on new things are found. We were amalga-
mating very well, when all of a sudden x-rays were found. Then we amalgamated
some more, and mesons were found. Therefore, at any stage of the game, it always
looks rather messy. A great deal is amalgamated, but there are always many wires
or threads hanging out in all directions. That is the situation today, which we shall
try to describe.
Some historic examples of amalgamation are the following. First, take heat
and mechanics. When atoms are in motion, the more motion, the more heat the
system contains, and so heat and all temperature effects can be represented by the
laws of mechanics. Another tremendous amalgamation was the discovery of the
relation between electricity, magnetism, and light, which were found to be dif-
ferent aspects of the same thing, which we call today the electromagnetic field.
Another amalgamation is the unification of chemical phenomena, the various
properties of various substances, and the behavior of atomic particles, which is in
the quantum mechanics of chemistry.
The question is, of course, is it going to be possible to amalgamate everything,
and merely discover that this world represents different aspects of one thing?
Nobody knows. All we know is that as we go along, we find that we can amalga-
mate pieces, and then we find some pieces that do not fit, and we keep trying to
put the jigsaw puzzle together. Whether there are a finite number of pieces, and
whether there is even a border to the puzzle, is of course unknown. It will never
be known until we finish the picture, if ever. What we wish to do here is to see to
what extent this amalgamation process has gone on, and what the situation is at
present, in understanding basic phenomena in terms of the smallest set of principles.
To express it in a simple manner, what are things made of and how few elements
are there ?
2-2
2-2 Physics before 1920
It is a little difficult to begin at once with the present view, so we shall first
see how things looked in about 1920 and then take a few things out of that picture.
Before 1920, our world picture was something like this: The "stage" on which
the universe goes is the three-dimensional space of geometry, as described by
Euclid, and things change in a medium called time. The elements on the stage are
particles, for example the atoms, which have some properties. First, the property
of inertia: if a particle is moving it keeps on going in the same direction unless
forces act upon it. The second element, then, is forces, which were then thought
to be of two varieties: First, an enormously complicated, detailed kind of inter-
action force which held the various atoms in different combinations in a com-
plicated way, which determined whether salt would dissolve faster or slower when
we raise the temperature. The other force that was known was a long-range
interaction—a smooth and quiet attraction—which varied inversely as the square
of the distance, and was called gravitation. This law was known and was very
simple. Why things remain in motion when they are moving, or why there is a
law of gravitation was, of course, not known.
A description of nature is what we are concerned with here. From this point
of view, then, a gas, and indeed all matter, is a myriad of moving particles. Thus
many of the things we saw while standing at the seashore can immediately be
connected. First the pressure: this comes from the collisions of the atoms with
the walls or whatever; the drift of the atoms, if they are all moving in one direc-
tion on the average, is wind; the random internal motions are the heat. There are
waves of excess density, where too many particles have collected, and so as they
Tush off they push up piles of particles farther out, and so on. This wave of excess
density is sound. It is a tremendous achievement to be able to understand so much.
Some of these things were described in the previous chapter.
What kinds of particles are there? There were considered to be 92 at that time:
92 different kinds of atoms were ultimately discovered. They had different names
associated with their chemical properties.
The next part of the problem was, what are the short-range forces ? Why
does carbon attract one oxygen or perhaps two oxygens, but not three oxygens?
What is the machinery of interaction between atoms? Is it gravitation? The answer
is no. Gravity is entirely too weak. But imagine a force analogous to gravity,
varying inversely with the square of the distance, but enormously more powerful
and having one difference. In gravity everything attracts everything else, but now
imagine that there are two kinds of "things," and that this new force (which is
the electrical force, of course) has the property that likes repel but unlikes attract.
The "thing" that carries this strong interaction is called charge.
Then what do we have? Suppose that we have two unlikes that attract each
other, a plus and a minus, and that they stick very close together. Suppose we
have another charge some distance away. Would it feel any attraction? It would
feel practically none, because if the first two are equal in size, the attraction for
the one and the repulsion for the other balance out. Therefore there is very little
force at any appreciable distance. On the other hand, if we get very close with the
extra charge, attraction arises, because the repulsion of likes and attraction of
unlikes will tend to bring unlikes closer together and push likes farther apart.
Then the repulsion will be less than the attraction. This is the reason why the atoms,
which are constituted out of plus and minus electric charges, feel very little force
when they are separated by appreciable distance (aside from gravity). When they
come close together, they can "see inside" each other and rearrange their charges,
with the result that they have a very strong interaction. The ultimate basis of
an interaction between the atoms is electrical. Since this force is so enormous, all
the plusses and all minuses will normally come together in as intimate a combina-
tion as they can. All things, even ourselves, are made of fine-grained, enormously
strongly interacting plus and minus parts, all neatly balanced out. Once in a while,
by accident, we may rub off a few minuses or a few plusses (usually it is easier
to rub off minuses), and in those circumstances we find the force of electricity
unbalanced, and we can then see the effects of these electrical attractions.
2-3
To give an idea of how much stronger electricity is than gravitation, consider
two grains of sand, a millimeter across, thirty meters apart. If the force between
them were not balanced, if everything attracted everything else instead of likes
repelling, so that there were no cancellation, how much force would there be?
There would be a force of three million tons between the two! You see, there is
very, very little excess or deficit of the number of negative or positive charges
necessary to produce appreciable electrical effects. This is, of course, the reason
why you cannot see the difference between an electrically charged or uncharged
thing—so few particles are involved that they hardly make a difference in the weight
or size of an object.
With this picture the atoms were easier to understand. They were thought to
have a "nucleus" at the center, which is positively electrically charged and very
massive, and the nucleus is surrounded by a certain number of "electrons" which
are very light and negatively charged. Now we go a little ahead in our story to
remark that in the nucleus itself there were found two kinds of particles, protons
and neutrons, almost of the same weight and very heavy. The protons are elec-
trically charged and the neutrons are neutral. If we have an atom with six protons
inside its nucleus, and this is surrounded by six electrons (the negative particles in
the ordinary world of matter are all electrons, and these are very light compared
with the protons and neutrons which make nuclei), this would be atom number
six in the chemical table, and it is called carbon. Atom number eight is called
oxygen, etc., because the chemical properties depend upon the electrons on the
outside, and in fact only upon how many electrons there are. So the chemical
properties of a substance depend only on a number, the number of electrons. (The
whole list of elements of the chemists really could have been called 1, 2, 3, 4, 5,
etc. Instead of saying "carbon," we could say "element six," meaning six electrons,
but of course, when the elements were first discovered, it was not known that they
could be numbered that way, and secondly, it would make everything look rather
complicated. It is better to have names and symbols for these things, rather than
to call everything by number.)
More was discovered about the electrical force. The natural interpretation
of electrical interaction is that two objects simply attract each other: plus against
minus. However, this was discovered to be an inadequate idea to represent it.
A more adequate representation of the situation is to say that the existence of the
positive charge, in some sense, distorts, or creates a "condition" in space, so that
when we put the negative charge in, it feels a force. This potentiality for produc-
ing a force is called an electric field. When we put an electron in an electric field,
we say it is "pulled." We then have two rules: (a) charges make a field, and
(b) charges in fields have forces on them and move. The reason for this will be-
come clear when we discuss the following phenomena: If we were to charge a body,
say a comb, electrically, and then place a charged piece of paper at a distance and
move the comb back and forth, the paper will respond by always pointing to the
comb. If we shake it faster, it will be discovered that the paper is a little behind,
there is a delay in the action. (At the first stage, when we move the comb rather
slowly, we find a complication which is magnetism. Magnetic influences have to
do with charges in relative motion, so magnetic forces and electric forces can really
be attributed to one field, as two different aspects of exactly the same thing. A
changing electric field cannot exist without magnetism.) If we move the charged
paper farther out, the delay is greater. Then an interesting thing is observed.
Although the forces between two charged objects should go inversely as the
square of the distance, it is found, when we shake a charge, that the influence
extends very much farther out than we would guess at first sight. That is, the effect
falls off more slowly than the inverse square.
Here is an analogy: If we are in a pool of water and there is a floating cork
very close by, we can move it "directly" by pushing the water with another cork.
If you looked only at the two corks, all you would see would be that one moved
immediately in response to the motion of the other—there is some kind of "inter-
action" between them. Of course, what we really do is to disturb the water; the
water then disturbs the other cork. We could make up a "law" that if you pushed
2-4
the water a little bit, an object close by in the water would move. If it were farther
away, of course, the second cork would scarcely move, for we move the water
locally. On the other hand, if we jiggle the cork a new phenomenon is involved,
in which the motion of the water moves the water there, etc., and waves travel
away, so that by jiggling, there is an influence wry much farther out, an oscillatory
influence, that cannot be understood from the direct interaction. Therefore the-
idea of direct interaction must be replaced with the existence of the water, or-in-
the electrical case, with what we call the electromagnetic field.
The electromagnetic field can carry waves; some of these waves are light,
others are used in radio broadcasts, but the general name is electromagnetic waves.
These oscillatory waves can have various frequencies. The only thing that is really
different from one wave to another is the frequency of oscillation. If we shake a
charge back and forth more and more rapidly, and look at the effects, we get a
whole series of different kinds of effects, which are all unified by specifying but
one number, the number of oscillations per second. The usual "pickup" that we
get from electric currents in the circuits in the walls of a building have a frequency
of about one hundred cycles per second. If we increase the frequency to 500 or
1000 kilocycles (1 kilocycle = 1000 cycles) per second, we are "on the air," for
this is the frequency range which is used for radio broadcasts. (Of course it has
nothing to do with the air! We can have radio broadcasts without any air.) If
we again increase the frequency, we come into the range that is used for FM and
TV. Going still further, we use certain short waves, for example for radar. Still
higher, and we do not need an instrument to "see" the stuff, we can see it with the
human eye. In the range of frequency from 5 X 10 1 4 to 5 X 10 1 5 cycles per
second our eyes would see the oscillation of the charged comb, if we could shake it
that fast, as red, blue, or violet light, depending on the frequency. Frequencies
below this range are called infrared, and above it, ultraviolet. The fact that we
can see in a particular frequency range makes that part of the electromagnetic
spectrum no more impressive than the other parts from a physicist's standpoint,
but from a human standpoint, of course, it is more interesting. If we go up even
higher in frequency, we get x-rays. X-rays are nothing but very high-frequency
light. If we go still higher, we get gamma rays. These two terms, x-rays and gamma
rays, are used almost synonymously. Usually electromagnetic rays coming from
nuclei are called gamma rays, while those of high energy from atoms are called
x-rays, but at the same frequency they are indistinguishable physically, no matter
what their source. If we go to still higher frequencies, say to 10 24 cycles per
second, we find that we can make those waves artificially, for example with the
synchrotron here at Caltech. We can find electromagnetic waves with stupendously
high frequencies—with even a thousand times more rapid oscillation—in the waves
found in cosmic rays. These waves cannot be controlled by us.
Table 2-1
The Electromagnetic Spectrum
2-5
861970142.001.png
Zgłoś jeśli naruszono regulamin