Chapter12.pdf

(1200 KB) Pobierz
Chapter 12 Structural Dynamics
1
Chapter 12
Structural Dynamics
12.1 Basics of Structural Dynamics
12.2 Step-by-Step: Lifting Fork
12.3 Step-by-Step: Two-Story Building
12.4 More Exercise: Ball and Rod
12.5 More Exercise: Guitar String
12.6 Review
970191835.049.png
Chapter 12 Structural Dynamics
Section 12.1 Basics of Structural Dynamics
2
Section 12.1
Basics of Structural Dynamics
Viscous Damping
Key Concepts
Material Damping
Coulomb Friction
Lumped Mass Model
Modal Analysis
Single Degree of Freedom Model
Harmonic Response Analysis
Undamped Free Vibration
Transient Structural Analysis
Damped Free Vibration
Explicit Dynamics
Damping Coefficient
Response Spectrum Analysis
Damping Mechanisms
Random Vibration Analysis
970191835.060.png 970191835.068.png 970191835.069.png
Chapter 12 Structural Dynamics
Section 12.1 Basics of Structural Dynamics
3
Lumped Mass Model: The Two-Story Building
[5] Total
bending stiffness
of the second-
floor's beams
and columns.
[4] Total bending
stiffness of the
first-floor's beams
and columns.
[3] Total mass
lumped at the roof
floor.
[2] Total
mass lumped at
the first floor.
m 1
[1] A two-degrees-of-
freedom model for finding
the lateral displacements
of the two-story building.
m 2
k 1
k 2
c 1
c 2
[7] Energy dissipating
mechanism of the
second floor.
[6] Energy dissipating
mechanism of the first
floor.
970191835.001.png 970191835.002.png 970191835.003.png 970191835.004.png 970191835.005.png 970191835.006.png 970191835.007.png 970191835.008.png 970191835.009.png 970191835.010.png 970191835.011.png 970191835.012.png 970191835.013.png 970191835.014.png 970191835.015.png 970191835.016.png 970191835.017.png 970191835.018.png 970191835.019.png 970191835.020.png 970191835.021.png 970191835.022.png 970191835.023.png 970191835.024.png 970191835.025.png 970191835.026.png 970191835.027.png
 
Chapter 12 Structural Dynamics
Section 12.1 Basics of Structural Dynamics
4
Single Degree of Freedom Model
x
= ma
p kx cx = m x
m x + cx + kx = p
m
k
p
c
We will use this single-degree-of-freedom lumped mass model to
explain some basic behavior of dynamic response.
The results can be conceptually extended to general multiple-
degrees-of-freedom cases.
970191835.028.png 970191835.029.png 970191835.030.png 970191835.031.png 970191835.032.png 970191835.033.png 970191835.034.png 970191835.035.png 970191835.036.png 970191835.037.png 970191835.038.png 970191835.039.png 970191835.040.png 970191835.041.png 970191835.042.png 970191835.043.png 970191835.044.png 970191835.045.png
 
Chapter 12 Structural Dynamics
Section 12.1 Basics of Structural Dynamics
5
Undamped Free Vibration
If no external forces exist, the equation for the
one-degree-of-freedom system becomes
T = 2 π
ω
m x + cx + kx = 0
t )
If the damping is negligible, then the equation
becomes
m x + kx = 0
The
(
)
x = A sin ω t + B
time (t)
k
m
f = ω
Natural frequency:
(rad/s) or
2 π (Hz)
ω=
T = 1
Natural period:
f
970191835.046.png 970191835.047.png 970191835.048.png 970191835.050.png 970191835.051.png 970191835.052.png 970191835.053.png 970191835.054.png 970191835.055.png 970191835.056.png 970191835.057.png 970191835.058.png 970191835.059.png 970191835.061.png 970191835.062.png 970191835.063.png 970191835.064.png 970191835.065.png 970191835.066.png 970191835.067.png
 
Zgłoś jeśli naruszono regulamin