mechanika plynow opracowane zagadnienia.doc

(149 KB) Pobierz
MECHANIKA PŁYNÓW I

MECHANIKA PŁYNÓW I

 

  1. Zjawisko włoskowatości: Inaczej kapilarnośc. Zjawisko wznoszenia się (gdy menisk jest wklęsły – zwilżanie) i opadanie cieczy ( gdy menisk jest wypukły ) w cienkich kapilarach spowodowanie dodatkowym ciśnieniem.
  2. Zjawisko napięcia powierzchniowego: zjawisko fizyczne występujące na styku powierzchni cieczy z ciałem stałym, gazowym lub inną cieczą. Polega na powstawaniu dodatkowych sił działających na powierzchnię cieczy w sposób kurczący ją. Zjawisko to ma swoje źródło w siłach przyciągania pomiędzy molekułami cieczy. Występuje ono zawsze na granicy faz termodynamicznych, dlatego zwane jest też napięciem międzyfazowym .

  3. Rozmiar: 9520 bajtów
    Fontanna Herona: Fontanna Herona składa się z trzech naczyń. Jednego otwartego A (rys.1), w którym znajduje się wylot wodotrysku i dwóch naczyń B, C, zamkniętych służących do zapewnienia odpowiedniego ciśnienia wody u wylotu strumienia. Fontanna działa jeśli w naczyniu środkowym B będzie dostatecznie dużo wody, a sprężone powietrze z naczynia dolnego C zapewni dostatecznie wysokie ciśnienie. Powietrze w zbiornikach B i C będzie oczywiście sprężone przez wodę przepływającą z otwartego zbiornika A do zbiornika dolnego C. Efekt tego urządzenia jest duży, ale niestety krótki. Czas zależy od objętości naczyń zamkniętych B i C oraz średnicy wylotu wodotrysku.
  4. Zjawisko Venturiego:  zmiana przekroju zweżki powoduje zmianę predkości plynu a w konsekwencji zmianę  ciśnienia p.
  5. Paradoks hydrodynamiczny: Jeżeli w rurze, przez którą przepływa płyn, występuje zwężenie - to w zwężeniu ciśnienie statyczne jest niższe niż przed i za zwężeniem.Błąd w potocznym rozumowaniu polega na założeniu, że płyn w zwężeniu zmniejsza swoją objętość proporcjonalnie do zmiany przekroju rury i tym samym powinno wzrastać ciśnienie. Jest jednak inaczej. Ściśliwość w wypadku małych prędkości (w stosunku do prędkości dźwięku w ośrodku) prawie nie występuje. Płyn "radzi sobie" ze zwężeniem zwiększając prędkość przepływu. Oznacza to, że elementy płynu w obszarze początku zwężenia przyspieszają, natomiast w obszarze końca zwężenia zwalniają. Zmiana prędkości możliwa jest tylko poprzez działanie sił wewnątrz płynu, które wywołuje właśnie zmiana ciśnienia
  6. Siła nośna: siła działająca na ciało poruszające się w płynie, prostopadła do kierunku ruchu. Najbardziej reprezentatywnym przykładem wykorzystania siły nośnej jest siła nośna skrzydła samolotu.
  7. Efekt Magnusa: to zjawisko z zakresu dynamiki płynów, polegające na powstawaniu siły prostopadłej do kierunku ruchu, działającej na obracający się walec lub inną bryłę obrotową, poruszającą się względem płynu (cieczy, gazu).Zjawisko wpływa znacznie na przykład na tor lotu wirującej piłki, może być stosowane do wyznaczania prędkości przepływu płynu.

8.      Zjawisko kawitacji: jest zjawiskiem polegającym na gwałtownej przemianie fazowej z fazy ciekłej w fazę gazową pod wpływem zmiany ciśnienia. Jeżeli ciecz gwałtownie przyśpiesza zgodnie z zasadą zachowania energii, ciśnienie statyczne płynu musi zmaleć. Dzieje się tak np. w wąskim otworze przelotowym zaworu albo na powierzchni śruby napędowej statku.

  1. Taran hydrauliczny: proste urządzenie do przepompowywania wody nie wymagające zewnętrznego zasilania energią, wykorzystujące zjawisko uderzenia hydraulicznego. Wykorzystuje naturalną energię przepływającej wody. Składa się z poziomego rurociągu, pionowej rury odprowadzającej i zaworu zainstalowanego na końcu rurociągu poziomego.

10.  Stany skupienia materii:

a.      Ciało stałe - rodzaj fazy skondensowanej, każda substancja, która nie jest płynna, czyli nie może samoistnie zmieniać swoich kształtów i rozmiaru po np. wlaniu jej do naczynia. Ciało stałe jest pojęciem mało precyzyjnym i mogą w nim występować w rzeczywistości różne stany skupienia materii zwane bardziej                      precyzyjnie fazami fizycznymi.

b.      Ciecz - stan skupienia materii - pośredni między ciałem stałym a gazem, w którym ciało fizyczne trudno zmienia objętość, a łatwo zmienia kształt. Wskutek tego ciecz przyjmuje kształt naczynia, w którym się znajduje, ale w przeciwieństwie do gazu nie rozszerza się, aby wypełnić je całe. Powierzchnia styku cieczy z gazem lub próżnią nazywa się powierzchnią swobodną cieczy.

c.       Gaz - stan skupienia materii, w którym ciało fizyczne łatwo zmienia kształt i zajmuje całą dostępną mu przestrzeń. Właściwości te wynikają z własności cząsteczek, które w fazie gazowej mają pełną swobodę ruchu. Wszystkie one cały czas przemieszczają się w przestrzeni zajmowanej przez gaz i nigdy nie zatrzymują się w jednym miejscu. Między cząsteczkami nie występują żadne oddziaływania dalekozasięgowe, a jeśli, to bardzo słabe. Jedyny sposób, w jaki cząsteczki na siebie oddziałują, to zderzenia. Oprócz tego, jeśli gaz jest zamknięty w naczyniu, to jego cząsteczki stale zderzają się ze ściankami tego naczynia, wywierając na nie określone i stałe ciśnienie

11.  Model ośrodka ciągłego: W mechanice płynów, podobnie jak w mechanice ciała stałego, płyn rzeczywisty zastępuje się modelem teoretycznym. Przez nieuwzględnianie struktury cząsteczkowej i nieuporządkowanych ruchów cząsteczek przyjmuje się, że model teoretyczny płynu jest ośrodkiem ciągłym (continuum). Rozumie się przez to, że płyn ten jest materią ciągłą, wypełniającą przestrzeń w sposób doskonale ciągły (tzn. dowolnie małe otoczenie punktu w tej przestrzeni zachowuje jej właściwości).

12.   Granice stosowalności modelu ośrodka ciągłego: Założenie ciągłości wprowadza jednak pewne ograniczenia dotyczące najmniejszej masy płynu (dopuszczalnie małego otoczenia), w której obowiązują ogólne prawa mechaniki. Najmniejsza objętość musi być dostatecznie wielka w stosunku do długości swobodnych dróg międzycząsteczkowych, a równocześnie dużo mniejsza w stosunku do wymiarów liniowych ciał stałych ograniczających rozpatrywaną masę płynu lub poruszających się w płynie.

13.   Podział sił działających w płynach: Zależnie od  źródła ich pochodzenia mogą to być siły wewnętrzne lub zewnętrzne. Siły wewnętrzne są wywołane wzajemnym oddziaływaniem elementów mas leżących wewnątrz wydzielonej części obszaru i bezpośrednio sąsiadujących ze sobą. Występują one parami jako dwie siły o wspólnej linii działania i przeciwnych zwrotach. Siły wewnętrzne są siłami powierzchniowymi, są bowiem przyłożone bezpośrednio do powierzchni oddzielającej dwa sąsiednie elementy płynu. Siły zewnętrzne są wynikiem działania mas nie należących do wydzielonego obszaru na poszczególne masy tego obszaru. Siły zewnętrzne mogą być: masowe lub powierzchniowe.

14.   Definicja i pojęcie jednostkowej siły masowej Siły masowe albo objętościowe są to siły wywierane bezpośrednio na płyn zawarty w rozważanym obszarze płynnym nie związane z powierzchnią ograniczającą ten obszar. Do sił masowych zalicza się (na przykład):  siłę grawitacyjną występującą, gdy płyn porusza się w polu grawitacyjnym siłę magnetoelektryczną występującą m.in. wówczas, gdy płyn będący przewodnikiem elektryczności ( płynny metal, gaz zjonizowany) porusza się w polu elektrycznym,   siłę bezwładności występującą przy ruchu zmiennym.

  1. Definicja i pojęcie jednostkowej siły powierzchniowej: Siły powierzchniowe są to siły przyłożone na powierzchni płynnej1) (zmiennej w czasie) i wywierane przez płyn znajdujący się na zewnątrz obszaru płynnego V(t) ograniczonego tą powierzchnią (np. reakcje hydro- czy aerodynamiczne między płynem, a poruszającym się w nim ciałem 0stałym )
  2. Pojęcie ciśnienia: to wielkość skalarna określona jako wartość siły działającej prostopadle do powierzchni podzielona przez powierzchnię na jaką ona działa, co przedstawia zależność:

p={ F_n \over S},gdzie: p – ciśnienie (Pa), Fn - składowa siły prostopadła do powierzchni (N), S - powierzchnia ().

17.   Stan naprężeń w wybranym punkcie płynu:

18.  Lepkość płynu, pojęcie i określenie ilościowe: ...

Zgłoś jeśli naruszono regulamin